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We examine a number of models that generate random fractals. The models are 
studied using the tools of computational complexity theory from the perspective 
of parallel computation. Diffusion-limited aggregation and several widely used 
algorithms for equilibrating the Ising model are shown to be highly sequential; 
it is unlikely they can be simulated efficiently in parallel. This is in contrast to 
Mandelbrot percolation, which can be simulated in constant parallel time. Our 
research helps shed light on the intrinsic complexity of these models relative to 
each other and to different growth processes that have been recently studied 
using complexity theory. In addition, the results may serve as a guide to simula- 
tion physics. 
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1. I N T R O D U C T I O N  

Random fractals are a major  focus of investigation in statistical physics. 
Such patterns occur at equil ibrium critical points and arise through a 
variety of nonequi l ibr ium dynamical  processes. A number  of models 
generate random fractals, including diffusion-limited aggregation (DLA) 
and the Ising model at criticality. These models have been extensively 
studied by computer  simulation methods and, in some sense, they are 
defined by the algorithms that are used to simulate them. In  this paper we 
examine such defining algorithms from the viewpoint of the theory of 
computational" complexity. 
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Computational complexity is the branch of theoretical computer 
science that seeks to quantify the resources required to solve problems. One 
of the main achievements of complexity theory is the identification of a 
hierarchy of complexity classes. The classes differ with respect to how the 
various resources, such as time, space, and processors, scale in proportion 
to problem size. For example, does the running time increase as a 
logarithmic, power, or exponential function of the problem size? Our 
emphasis is on parallel computational complexity. We seek to answer the 
following question: how do the number of processors and the amount of 
time required to simulate a system on a massively parallel computer 
increase with the system size? 

The motivation for this work is two-fold. First, computational com- 
plexity may serve as a guide to simulation physics. With the growing 
availability of massively parallel computers, it is important to investigate 
models from the perspective of parallel complexity. Another, perhaps more 
significant, motivation is to provide an alternative characterization of these 
models. An enormous amount of effort has gone into characterizing the 
morphology of fractal patterns via critical exponents, fractal and multifrac- 
tal dimensions, scaling functions, and so on. Such characterizations fail to 
adequately distinguish these models from the standpoint of what can be 
described intuitively as complexity. We believe that the intuitive notion of 
physical complexity is at least partially captured by the computational 
complexity measure of parallel time (with the number of processors 
appropriately restricted). This idea, in a slightly different form, has been 
previously proposed by Bennett. ~1) 

In a nutshell, the idea is that simple objects can be generated quickly, 
while complex objects require a long history for their formation. We 
illustrate this by comparing two random fractals. The first is Mandelbrot 
percolation, ~21 an example of which is depicted in Fig. 1. We show that 
Mandelbrot patterns require only constant parallel time to generate. 
Though they are fractals, there is very little interesting morphology; the 
structure on each length scale is independent of the structure on other 
length scales. Many properties of Mandelbrot percolation are susceptible to 
rigorous analysis. ~ The second example is DLA, In~ which generates fractal 
patterns like those shown in Fig. 2. DLA patterns are produced by a highly 
sequential algorithm that seems to require polynomial (in the size of the 
aggregate) parallel time. DLA patterns reflect a subtle interplay of random- 
ness and structure on many length scales. DLA has remained largely refrac- 
tory to theoretical analysis. Whether or not one accepts a definition of 
physical complexity in terms of computational complexity, it is interesting 
that a variety of models in statistical physics can be sharply separated from 
one another by a fundamental new yardstick. 
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Our research extends a study of the complexity of a number of growth 
models. Ref. 5 is concerned with a fluid invasion model that generates 
clusters with the same statistics as DLA. This model is shown to be 
inherently sequential (technically, P-complete) and so it is unlikely that it 
can be efficiently simulated in parallel. Here we show that the original ran- 
dom walk dynamics for generating DLA clusters is also inherently sequen- 
tial. In ref. 6 we considered a number of other growth models--invasion 
percolation, Eden growth, ballistic deposition, and solid-on-solid 
growth--and showed that all of these models can be efficiently simulated 
in parallel. The fractal patterns associated with them can be generated on 
a parallel computer in a time that scales logarithmically in the system size 
while using a reasonable number of processors. Although each of these 
models is less complex than DLA, each is more complex than Mandelbrot 
percolation. 

Other applications of computational complexity theory to statistical 
physics have focused mainly on the existence of polynomial time sequential 
algorithms. For example, the problems of finding the exact ground states 
Of spin glasses tT) and computing self-avoiding walks in a random environ- 
ments tS) have been shown to be computationally intractable (technically, 
NP-complete). On the other hand, a polynomial time algorithm exists for 
the random field Ising model, tg) There is also work that establishes the 
complexity of finding the partition function of the Ising model and related 
spin models on arbitrary lattices either exactly tt~ or approximately using 
Monte Carlo methods. (~) 

In Section 2 we give an introduction to computational complexity 
theory. A reader familiar with this field may want to skim this section. In 
Section 3 we investigate the computational complexity of the following 
systems: Mandelbrot percolation, DLA, Metropolis dynamics for the Ising 
model, Wolff dynamics for the Ising model, and Swendsen-Wang dynamics 
for the Ising model. Section 4 is devoted to a discussion of the results. 

2. C O M P U T A T I O N A L  C O M P L E X I T Y  B A C K G R O U N D  

In this section we provide an introduction to computational com- 
plexity theory. The reader can find further information and details in a 
number of texts!~2" ~3) and monographs. ~ 14-16) 

2.1. The Parallel Random Access Mach ine  

The theoretical model we focus on is the parallel random access 
machine or P-RAM. It is the most commonly used model in parallel 
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computation. We describe the P-RAM and then relate its resource usage to 
the corresponding measures for actual parallel computers. 

The P-RAM consists of a number of processors each with local 
memory and having access to a common global random access memory. 
All processors run the same program but are distinguished by nonnegative 
integer labels so that the processors may operate on their own data or skip 
instructions. Input to the machine is placed in designated, consecutive 
global memory locations as is output. The P-RAM is in the class of single- 
instruction multiple-data-stream (SIMD) models. The processors run syn- 
chronously and in each time step a single random access machhTe (RAM) 
instruction (~7) or a global memory access instruction is executed by a sub- 
set of the processors. Examples of typical instructions are "write the con- 
tents of the accumulator to memory location a" and "add the contents of 
the accumulator to the contents of register a, placing the sum in the 
accumulator." 

Although many processors may read the same memory location at a 
particular time, difficulties arise if multiple processors attempt to write to 
the same location. One frequently used arbitration scheme is the con- 
current write model in which processors are assigned a write priority. 
When more than one processor attempts to write to a given location, the 
processor with the highest priority succeeds. This model is known as the 
PRIORITY CRCW P-RAM. (18) We adopt this model and simply refer to 
it as the P-RAM. 

In the P-RAM model any processor can access any global memory 
location in one time step; the model allows unlimited parallelism. For this 
reason the P-RAM serves as a convenient model for designing and analyz- 
ing parallel algorithms, for studying processor and time requirements, and 
for proving lower bounds. Although the P-RAM is overly simplistic in its 
assumptions, it can nevertheless be simulated on models of parallel 
computation with more restricted connectivity such as the hypercube. 
These simulations usually have a slowdown of a logarithmic factor and 
require roughly the same amount of hardware as the corresponding 
P-RAM computations; see ref. 19 for additional details and references. 

As an example of the utility of parallelism, consider the task of com- 
puting the parity of n bits. Parity is the problem of determining whether 
there is an even number of l's in the input. Initially, the n bits are stored 
in global memory locations 1,..., n. A P-RAM program that computes 
parity uses n/2 processors numbered 1 ..... n/2 to add 17/2 pairs of bits 
(modulo 2) in parallel. That is, processor 1 adds the contents of locations 
1 and 2, storing the result (modulo 2) in location I, processor 2 adds loca- 
tions 3 and 4, storing the result (modulo 2) in location 2, and so on. 
Similarly, the resulting 17/2 values are added pairwise (modulo 2) by n/4 
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processors. This process is repeated until, after [-log2n-] time steps, parity 
is computed. Notice that in this case the algorithm's output is placed in 
global memory cell 1 by processor number 1. The algorithm runs in 
O(log n) tim6 using n/2 processors. 

2.2. Complex i ty  Classes 

The primary question addressed by computational complexity theory 
is how the difficulty of a computation scales with the size of the problem 
instance. Complexity theory usually focuses on decision problems. An 
instance of a decision problem is a string of bits encoding the problem; the 
solution is simply a 1 or 0. If the solution for input x is 1, we say that x 
is "accepted" and otherwise x is "rejected." In this sense, a decision 
problem is defined by its set of accepted strings. The problem size, n = Ixl, 
is the length of the encoded input. A simple example involving the parity 
problem discussed above is as follows: 

Parity 

Given: b,,..., b,,, where bi ~ {0, 1}. 

Problem: Do an even number of the bi's have value 1? 

In this case the input is easily encoded using exactly n bits. The output 
is a 1 if there are an even number of bi's with value 1, and 0 otherwise. 
It is easy to see that the answer may be found on a single processor com- 
puter (such as a RAM or more familiar desktop computer) with a running 
time that scales linearly in n by simply scanning through the bits and 
maintaining their sum modulo 2. 

We now define several important complexity classes for parallel 
computation. 

Def in i t ion 2.1. 
�9 The class AC ~ consists of those decision problems that can be 

solved on a P-RAM in O(1) (constant) time using n ~ (polynomial) pro- 
cessors. 

�9 The class NC consists of those decision problems that can be solved 
on a P-RAM in (log n)~ (polylogarithmic) time using n ~ processors. 

�9 The class P (polynomial time) consists of those decision problems 
that can be solved on a P-RAM in n ~ time using n ~ processors. 

It is easy to see that AC~ NC_c p. It is known that A C ~  NC and, 
while no proof yet exists, it is widely believed that NC :# P. The classes in 
Definition 2.1 are robust in the sense that they may be equivalently defined 
with respect to several different computation models; ~15~ they are not tied 
to the P-RAM model of parallel computation. 
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All of the problems considered in this paper are in the class P. It is 
generally accepted that problems in the class P have feasible sequential 
time solutions. The question we pose for the fractal models is whether a 
polynomial time problem can be qualitatively sped up via massive 
parallelism. For the parity example, the sequential solution mentioned 
takes O(n) time. The parallel solution outlined previously shows a P-RAM 
can solve this problem in O(log n) time using n/2 processors. Thus, the 
parity problem is in the class NC and a qualitative speedup is achieved in 
the parallel setting. On the other hand, parity is not in AC~ see ref. 18. 

We will use the terminology that problems in NC (and thus AC ~ are 
"efficiently solved in parallel," since we obtain a qualitative speedup solving 
these problems in parallel. On the other hand, problems that are in P but 
likely not in NC are called "inherently sequential." The running time for 
solving an inherently sequential problem cannot be decreased from polyno- 
mial to polylogarithmic using a polynomial number of processors. Below 
we identify a class of problems that are in P but not NC (unless it happens 
that NC = P). 

In order to proceed, we need to be able to relate problems to one 
another. This is accomplished via the notion of reduction. The idea is 
similar to a commonly used programming practice. To solve one problem, 
we often use a subroutine call to a different problem. In this sense we 
reduce our original problem to the one involved in the subroutine call. 
More formally, we have the following. 

Def in i t ion  2.2. Let n = Ixl.  ( T h r o u g h o u t ,  Ixl denotes the length of 
string x and a decision problem D is represented as a set of accepted 
strings.) Decision problem D i is NC many-one reducible or NC reducible 
(~()  to decision problem D2 if there exists a function f such that xeD~ if 
and only iff(x)eD,_, a n d f c a n  be computed on a P-RAM in (logn) ~ 
time using n ~ processors. 

If D~ ~(D_,, then D~ is "no harder" than D 2. This is because we could 
solve D~ using an algorithm for D_,, where the input to D 2 is produced by 
an efficient calculation involving f. We can also compare a given problem 
to an entire complexity class, via the concept of "completeness." 

Def in i t ion  2.3. A decision problem D is P-complete if (1) D e P  
and (2) for all D' ~ P, D' ~( D. 

The P-complete problems are therefore the hardest problems in P. 
Based on these definitions, the following theorem is straightforward to 
obtain. 
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T h e o r e m  2.4. If any P-complete problem is in NC then NC = P. 

Thus, if the well-known conjecture in computer science that NC :~ P 
holds (and there is lots of evidence supporting this conjecture, It4~ P-com- 
plete problems are inherently sequential. 

is a transitive relation. That is, if D~ <(D2 and D2-<(D3, then 
DI -< D3. Therefore, if some problem D' is shown to be P-complete and 
D'-< D, then D must be as difficult to solve as D'. In this case we say D 
is P-hard. If D is also in P, it is P-complete as well. Using transitive reduc- 
tions, a large number of P-complete problems have been identified and no 
efficient parallel solution has been found for any of them, providing 
evidence for the conjecture. In this paper we will prove that several 
problems from statistical physics are P-complete by showing that known 
P-complete problems reduce to them. 

The fundamental P-complete problem is the circuit value problem 
(CVP); it is phrased in terms of Boolean circuits. Before describing CVP, 
we give an informal description of circuits. A Boolean circuit is a collection 
of connected NOT, AND, and OR gates. NOT gates have one input and multi- 
ple outputs; AND and OR gates have multiple inputs and multiple outputs. 
The fan-in (fan-out)is the number of inputs (outputs) of a gate. The con- 
nection of the gates is "feedforward." That is, it must be possible to number 
the gates so that the outputs of a gate are connected to the inputs of gates 
with higher numbers. Such a numbering is called a topological numbering 
and we say the gates are in topological order. In calculating outputs from 
inputs each gate computes its Boolean function just once. Sometimes gates 
other than NOT, AND, and OR are considered. The size of a circuit is defined 
as the number of gates. The depth is the longest path from an input to an 
output. 

Circuit  Va lue  Problem (CVP) 

Given: A compact 3 encoding ~ of a Boolean circuit together with its 
inputs Xl ..... x,,, and a designated output gate g. 

Problem: Does g evaluate to 1 on input xl ..... x,,? 

Theorem 2.5. The circuit value problem is P-complete. '2~ 

Numerou~ variants of CVP are P-complete/~4, In NOR CVP the circuit 
consists entirely of NOR gates with fan-in and fan-out two. NOR CVP 
without fan-out restrictions is also P-complete for planar circuits; this ver- 
sion is called planar NOR CVP. In monotone CVP the circuit is composed 

s A compact encoding of a circuit is polynomial in the circuit size. 
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of AND and OR gates (NOT gates are absent) having fan-in and fan-out two. 
This problem is P-complete for arbitrary circuits but it is in NC for planar 
circuits. We shall make use of planar NOR, monotone, and other restricted 
variants of CVP in Section 3. 

A proof that a problem D is P-complete via a reduction from CVP is 
tantamount to what in other contexts has been called "computational 
universality." The dynamics of hard spheres in classical mechanics (2~) and 
some cellular automata rules t~4'22) have been shown to be computationally 
universal. Our proofs that DLA and various Ising Monte Carlo dynamics 
are P-complete depend on showing that arbitrary logical calculations can 
be embedded in these dynamics. 

In addition to the resources of parallel time and number of processors, 
the notion of uniformity plays an important role in computations. Roughly 
speaking, a uniform solution to a problem uses the "same" program for 
each problem size, whereas a nonuniform solution may use a different 
program for each size. For example, simulating the Ising critical point in 
three dimensions using conventional Monte Carlo methods is a non- 
uniform problem because the critical temperature is required as a 
parameter in the algorithm. As the system size increases, the program must 
contain an increasingly accurate value of the critical temperature. 4 On the 
other hand, simulating DLA clusters is a uniform task since no fine tuning 
of parameters is required. The same can be said for other "self-organized" 
critical points such as invasion percolation. Recently, a uniform algorithm 
for sampling Ising critical points has been developed, t23) 

2.3. Parallel Time and Logical Depth 

The P-RAM model and the complexity measures that are built from 
it are in some sense unphysical because unit time is assigned to a single 
read or write step. Eventually, as such a device is scaled up, the com- 
munication time between processors and memory dominates the running 
time and the unit-time assumption fails. Indeed, in the limit of large 
systems all of the models discussed here require polynomial time to 
simulate on any real-world device because all are capable of generating 
random patterns with correlations on the scale of the system size. These 
correlations cannot be set up without communication across the system 
and this requires polynomial time. 

Nonetheless, parallel time correctly identifies an important aspect of 
the problem which can be called "logical depth." The logical depth is the 

4 Specifically, the critical temperature must be known to accuracy L- ~/", where L is the system 
size and v is the correlation length exponent. 
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minimum number of logical operations that must be carried out in 
sequence before a problem is solved. This concept can be made rigorous by 
considering families of Boolean circuits, t~5~ A family of Boolean circuits, 
one for each problem.size, can simulate a P-RAM programmed to solve a 
given problem and vice versa. The definitions of the complexity classes 
AC ~ NC, and P can be stated in terms of families of Boolean circuits: the 
number of processors corresponds roughly to the size of the circuit (num- 
ber of gates) and the parallel time roughly to the depth of the circuit 
(length of the longest path from input to output). Thus, for example, a 
problem is in the class NC if it can be solved by a uniform family of 
Boolean circuits having polynomial size and polylogarithmic depth in the 
number of inputs (the problem size). 

A few comments are in order regarding the number of processors. If 
only one processor is allowed, then all the problems treated here require 
polynomial time. If, on the other hand, the number of processors is 
unrestricted, it can be shown t24~ that all the problems discussed here are 
solvable in constant P-RAM time using exponentially many processors (or 
equivalently by circuit families with exponential size and constant depth) 
and again the interesting distinctions based upon parallel time disappear. 
Interesting results are found when polynomial parallelism is permitted. 

2.4. Complexi ty  of Sampling Methods 

Computer scientists study decision problems, whereas computational 
statistical physicists are usually concerned with sampling problems-- 
generating states from some equilibrium or nonequilibrium distribution. 
Sampling algorithms require a supply of random numbers and produce as 
output a system configuration. This configuration is described by m bits 
representing the degrees of freedom of the system expressed in binary. One 
can extend the ideas of complexity theory to sampling methods by intro- 
ducing probabilistic P-RAMs in which each processor is equipped with a 
register for generating random bits. 

Instead of producing random bits dynamically, one could equivalently 
produce the required random bits in advance and include them as inputs 
to a deterministic calculation. In this way a sampling method is reduced to 
m decision problems, one for each binary degree of freedom. An example 
of such a decision problem is "Does Ising spin sj( 1 <~j <~ m) have value + 1 
after M iterations of the Monte Carlo procedure using random numbers 
xi?" Note that these m decision problems may be run in parallel with, in 
the worst case, a factor of m increase in the number of processors. There- 
fore, the sampling algorithm has the same parallel time requirement up to a 
constant factor as the associated decision problem. 
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In statistical physics, the problem size is conventionally identified with 
the system size, the number of bits m required to specify a system con- 
figuration. This differs from complexity theory, where it is the number of 
bits required to state the problem that is identified as the problem size. The 
following definition ensures that the two notions of problem size are com- 
patible. For a given sampling method with r random inputs, o ordinary 
inputs, and m outputs, we define the associated natural decision problem 
as follows. The input is of length m + o + r. The first m bits represent the 
degrees of freedom of the system. Of these bits exactly one is a I. The posi- 
tion of the 1 specifies which degree of freedom of the system (e.g., which 
Ising spin) is to be evaluated. Since the selected degree of freedom is 
expressed in unary, the decision problem size is at least as great as the 
system size. 5 For example, to represent the fifth out of ten degrees of 
freedom our unary expression would be "0000100000." The next o bits are 
the ordinary inputs to the problem expressed in a suitably compact form. 
These inputs might include the size of the lattice, the temperature, the num- 
ber of iterations of an elementary Monte Carlo step, and other relevant 
parameters expressed in binary notation. The final r bits are the random 
bits needed for the sampling method. So that the answer or other poten- 
tially useful information is not built into these bits, we require that they be 
interpreted as independent random variables that take the value 1 with 
probability 1/2. We restrict our attention to "reasonable" sampling 
methods where r is bounded by a polynomial in m. 

The decision problem for a sampling method can now be studied using 
conventional computational complexity theory. It must be emphasized that 
the complexity of the decision problem is only an upper bound on the com- 
plexity of sampling a given distribution. The reason is that the decision 
problem is associated with a particular sampling method. It may be that an 
alternative method leads to a less complex decision problem. In principle 
we would like to know how the time, number of processors, and number 
of random bits scale with m for the optimal sampling method. Unfor- 
tunately, tools for studying this question have yet to be developed. Instead, 
we focus on the complexity of several known sampling methods. Nonethe- 
less, if the best known sampling methods are investigated and their com- 
plexity is established, it is plausible that the complexity of sampling has 
also been found. (Note that proving that a particular sampling method is 
optimal seems to be a very difficult task.) 

5 This helps ensure that the problems considered are in P and that the number of processors 
used will be polynomial in the input size. 
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3. COMPLEXITY OF RANDOM FRACTALS 

In this section we consider the following models: Mandelbrot percola- 
tion, diffusion-limited aggregation, and the Ising model. We discuss sampl- 
ing methods for these systems and then study the parallel computational 
complexity of the associated decision problems. Each model generates 
(under some conditions) random mass  f rac ta l s - - s e t s  of "occupied" sites 
whose number scales as a noninteger power of the lattice size. 

3.1. Mandelbrot  Percolation 

This random fractal was first described by Mandelbrot. (2) It was 
analyzed by rigorous methods in ref. 3 and was later generalized and 
applied as a model of a fractal porous medium, t2s-27~ Mandelbrot percola- 
tion is defined on a d-dimensional lattice. It is parametrized by a rational 
retention factor Q (0 ~< Q < 1), a positive integer rescaling factor N, and 
iteration number k. System configurations are described by a bit at each 
lattice site. If the bit is a 1, we say the site is "occupied." For purposes of 
illustration, we consider the two-dimensional version on an N* x N k square 
lattice. A configuration is generated in the following way: at the ith step 
(0 ~< i ~< k - 1 ) the lattice is completely divided into N ~ • N ~ nonoverlapping 
squares and each square is independently "retained" with probability Q. If 

Fig. 1. A realization of Mandelbrot percolation. 
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a square is retained, the site(s) in it are not changed. If  a square is not 
retained, then all of the site(s) in it are changed to unoccupied. After 
k steps unoccupied regions with a wide range of sizes are typically 
created. The resulting set of occupied sites is a random fractal with 
limiting Hausdorf  dimension, D n = 2 + (log Q)/(log N) if D H > O. A 
realization of Mandelbrot percolation with N = 2 ,  Q = 0.9, and k = 7  is 
shown in Fig. 1. 

A natural decision problem associated with Mandelbrot percolation 
takes as input random numbers xi with 0 ~<xi< 1. These numbers are 
used to generate "retention bits" that are 1 if x,. < Q and 0 otherwise. Each 
retention bit determines whether a particular square of a given size is 
retained. 

Mandelbrot Percolation (dimension d, scale factor N, precision b) 

Given: A nonnegative integer k, a designated lattice site s expressed in 
unary with Isl = N ak, a retention factor Q (0 ~< Q < 1) with Q represented 
by a b-bit binary number, 6 and a list of ( N  a k -  1 ) / ( 1 - N  -a)  random 
numbers x~ with 0 ~< x; < 1 expressed as a b-bit number. 

Problem: Is site s occupied by the Mandelbrot percolation process? 

The instances of Mandelbrot percolation require that the dimension, 
scale factor, and precision are all fixed inputs. In terms of the discussion of 
Section 2.4 relating decision and sampling problems, Isl = m,  
[-log2k-] + b = o, and b ( N  ak - 1 )/( 1 - N - d )  ~ -  r.7 

A constant-time P-RAM algorithm for Mandelbrot percolation is 
sketched below. First, retention bits for every square of each size are com- 
puted in parallel by comparing the x,. to Q. Since b is a constant, this can 
be done in constant time. The m retention bits for the individual sites are 
placed in memory cells 1 to m. For each s i te j  (1 <~j<<,m) the occupancy of 
j is determined by taking the AND of all the retention bits of the k squares 
containing j. To compute the AND, all processors reading a retention bit 0 
write a value of 0 into global memory cell j. This step uses k m  processors. 
Note, cell j is 1 if site j is occupied and 0 otherwise. Next, the AriD of cell 
j and the j t h  place in the unary expression of s is computed; the result is 
placed in cell j. Now, cell j is 1 if and only if site j is occupied and is the 
selected site. Finally, the OR of cells 1 through m is taken (by having any 
processor reading a 1 write to memory cell 1) to determine if the selected 
site is occupied. 

6 Our method of producing random numbers via coin tossing suggests this coding choice. 
Such a scheme does not allow all possible rationals in the interval [0,1) to be represented. 

7 This is not precise, as delimiters are also used in the encoding to make decoding easier. 



Computational Complexity of Generating Random Fractals 1311 

Fig. 2. A realization of diffusion-limited aggregation. 

This P - R A M  algori thm uses constant  time and polynomial  (kin) pro-  
cessors so the following holds: s 

Theorem 3.1.  Mandelbrot  percolation is in AC ~ 

3.2. D i f fus ion-L imi ted  Aggregat ion  

Diffusion-limited aggregation (4) is a cluster growth model where new 
occupied sites are added to the growing cluster one at a time. Here we 
illustrate D L A  for a two-dimensional  lattice with growth initiated along a 
line. A r andom walker is started at a r andom position along the top edge 
of an L • L square lattice. The walker moves until it is a nearest neighbor 
of an existing occupied site, at which point  it joins the cluster. Initially, the 
bo t tom edge of the lattice is considered occupied. If  a walk fails to join the 
cluster, hits the top boundary  of the lattice, or is unable to move (goes off 
the lattice or  encounters a site that  is occupied in its first move),  it is dis- 
carded. A new r andom walk is started as soon as the previous walk has 
joined the cluster or been discarded; the process continues until a cluster 
of  the desired size is grown. A realization of D L A  is shown in Fig. 2. 

A natural  decision problem associated with the dynamics of diffusion- 
limited aggregation is defined below. 

Diffusion Limited Aggregation (dimension d) 
Given: Tl]ree positive integers L, M~ and M2, a designated site s 

expressed in unary with Isl = L d, and a list of  r andom bits specifying M1 
walk trajectories each of length M2 defined by a starting point on the top 

s Technically, we have only been able to show Mandelbrot percolation is in nonuniform AC ~ 
however, we believe that the problem is, in fact, in uniform AC ~ 
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edge of the lattice together with a list of directions of motion (e.g., N, S, 
E, and W for two dimensions). 

Problem: Is site s occupied by the aggregation process? 

The proof that DLA is P-complete proceeds by a reduction from a 
variant of the planar NOR circuit value problem. The reduction has a 
similar flavor to the proof that a closely related fluid invasion problem is 
P-complete, (5~ although there seems to be no way to make use of that proof 
directly. 

T h e o r e m  3.2. Diffusion-limited aggregation is P-complete. 

Proof Sketch. The idea is to prescribe a sequence of walks capable 
of carrying out the evaluation of a modified (but still P-complete) version 
of the planar NOR circuit value problem. In this version of CVP the NOR 
gates have a fan-in and fan-out of two. For P-completeness we also allow 
single input OR gates with fan-out restricted to at most two. The circuit 
encoding requires that the gates are numbered in topological order and 
arranged in levels. The encoding specifies a planar layout of the circuit with 
gates being located at grid points. Finally, the circuit is required to be syn- 
chronous. That is, each gate receives its inputs only from gates on the 
immediately preceding level. Gates at level one are the only gates that are 
allowed to have direct circuit inputs. It can be shown using techniques 
similar to those described in ref. 14 that this version of CVP is P-complete. 

The walks to simulate the circuit are chosen so that the cluster grows 
along linear paths of sites and bonds that play the role of wires connecting 
gates. A wire carries the value TRUE if the cluster grows along it. Wires that 
remain unoccupied carry the value FALSE. The gates themselves are 
represented by locations where wires meet and several parts of the growing 
cluster interact. Below we describe how logical values are propagated along 
wires and how NOR and OR gates are implemented. 

Logical values are propagated as follows. Each wire is realized by a 
preassigned sequence of walks, one walk for each site along the wire. These 
walks start from the upper boundary and move to successive locations 
along the wire. Each walk moves to its assigned site along the wire and, if 
the value of the wire is TRUE, it sticks there. Each walk reverses its path 
after reaching its assigned site. In this way if the wire carries the value 
FALSE, the walk returns to the upper boundary and is discarded. For exam- 
ple, the first walk creating the output wire for the gate shown in Fig. 3 
arrives at site d from above. If c is occupied, this walk sticks at d and the 
cluster begins to grow along the output wire. If c is not occupied, the walk 
turns around and retraces its steps back to the upper boundary, where it 
is discarded. Thus the cluster grows along the output if site c is occupied. 
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input 1 input 2 

power  

Fig. 3. Gadget for a NOR gate. Filled circles and connecting bold lines show the two input 
wires, the output wire, and the power wire. The dashed line shows the path of the walk that 
evaluates the gate. This walk terminates on site a, b or e. 

It is straightforward to have the output wire split into two separate wires. 
These then become the inputs to other gates. Note that a larger fan-out 
could be supported; however, the details of the proof become more 
involved. 

The simulation of planar NOR CVP by DLA is simpler in three or 
more dimensions than in two dimensions. We first discuss the simpler case 
and then consider the additional technicalities associated with two-dimen- 
sional DLA. 

A NOR gadget is shown in Fig. 3. The solid lines and circles represent 
the input wires, the output wire, and the "power" wire. The power wire 
always carries the value TRUE and its purpose is to provide a growing tip 
for the output if the gate evaluates to TRUE. The dashed line represents a 
walk that will stick at one of the three open circles labeled a, b or e. The 
dashed walk evaluates the gate and so must not occur until the input and 
power wires have been grown to completion. Suppose that input 1 is TRUE, 
SO that the corresponding segment of wire is occupied. Then the trajectory 
sticks at a. If  input 1 is VALSE but input 2 is TRUE, the dashed walk sticks 
at b. Finally,. if both inputs are FALSE then the walk sticks at c. The 
occupancy of site e records the output of the gate. 

The single input OR is simply a way to pass logical values through 
levels and is trivially implemented as a single wire for three and higher 
dimensional lattices. Also, for three and higher dimensions each NOR gate 
may be separately supplied with its own power wire. For example, each 

822/82/5-6-7 
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gate has a "column" dedicated to its power wire. When the wire reaches the 
appropriate height, it is routed horizontally to the desired gate. However, 
for two-dimensional D L A  there is an additional complication in arranging 
to have the power wire arrive at each gate without interfering with the 
wires that carry truth values. To accomplish this we use a single power wire 
for the entire circuit. It is "snaked" through the gates level by level. See the 
power wire in the example shown in Fig. 6; this example is discussed 
further later. 

Figure 4 shows the implementation of  a single input OR gate in two 
dimensions. Effectively, it shows how to cross the power wire (running 
toward the left) over a logical wire (running vertically). First, the logical 
wire is grown to site 1. Next the power wire is grown as far as the 
rightmost solid circle in the figure. The walk represented by the dashed line 
on the right sticks at a if the logical wire is TRtrE and sticks at b if the logi- 
cal wire is FALSE. Similarly, the walk represented by the dashed line on the 
left sticks at e if the logical wire is TRtr~. and sticks at d if the logical wire 
is FALSE. Finally, the logical wire may continue to grow vertically and the 
power wire may continue to grow to the left without interfering with one 
another. In this way a single input OR is simulated. 

In two dimensions it is also necessary to have the power wire cross 
through a NOR gate. This can be done as shown in Fig. 5. In this figure the 
path of  the power wire and the walks that bring particles to the wire are 
numbered and shown as dashed lines. Recall that  exactly one of  the sites 
a, b or c is occupied during the evaluation of the gate. If  the output  is TRUE 

o u t p u t  

c 6 1 o a  
I I 

~__~__i__.aO 6 b - 

t 
p o w e r  

input 

Fig. 4. Gadget for a single input OR gate (effectively crossing a power wire and a logical 
wire). The logical wire is grown to site 1, then the two dashed walks carry the power wire 
across the junction, sticking at a and c respectively, if the logical wire is TRU~ or at b and d 
respectively, if the logical wire is FALSE. 
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Fig. 5. Passing the power wire through a r~oa gate after its evaluation. The growth of the 
wire follows the numbered sites where the first occupied site is either 1, 3 or 6, depending on 
whether e, h or a is occupied. 

C) 

Fig. 6. Layout of NOR (solid circles) and single input oR gates (open circles) in levels with 
the power wire (thin line) traversing the gates in the order in which they are evaluated. 
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and c is occupied, the power wire grows along the full path 1-8. If instead 
b is occupied, sites 1 and 2 are skipped and growth starts at 3. In this case 
the walks that go to 1 and 2 turn around there and return to the upper 
boundary, where they are discarded. Finally, if site a is occupied, then 
growth of the power wire starts at 6. Thus after helping with the evaluation 
of a NOR gate, the power wire may be passed through, 

In two dimensions a single power wire traverses all the gates in the 
sequence in which they would be evaluated in topological order. This 
requires that the gates be arranged in levels as shown in the example in 
Fig. 6. The thick lines are circuit wires, the filled circles are NOR gates, and 
the open circles are single input OR gates. The power wire traverses the 
gates one level at a time. Gates are evaluated from bottom to top and level 
by level along the path of the power wire. The lower edge of the lattice is 
used as a source for TRUE inputs to gates. At each gate the power and input 
wires arrive first, then the gate is evaluated, and finally the power wire is 
continued to the next gate. After an entire level has been simulated, outputs 
are grown to the succeeding level. The routing between levels can be 
accomplished by "spreading" the circuit out on the lattice and then allocat- 
ing a couple of horizontal channels to each output of a gate. An output will 
be grown upward to its designated channel, grown horizontally underneath 
its appropriate gate, and then grown upward to serve as an input. The 
planarity of the original circuit guarantees that there will be no interference 
of walks during this routing. 

The reduction described above shows that the special instance of CVP 
we constructed is faithfully evaluated by the growth of the DLA cluster. 
Furthermore, it is an NC reduction. The key point is that the choice of 
paths for the walks is independent of the evaluation of the circuit. The full 
layout of the walks is given globally by the planar layout of the original 
circuit as outlined above and locally by Figs. 3-5. All calculations required 
to compute these walks can be performed in NC. 

3.3. Metropol is Dynamics for the Ising Model  

Configurations of the Ising model are defined by spin variables o- i on 
a lattice where each spin may take the value - 1 or + 1, The conventional 
way to obtain equilibrium states of the Ising model is via the Metropolis 
Monte Carlo method. One implementation of this method is as follows; at 
each step of the algorithm a site i is chosen at random and the energy 
change AE~, for flipping the spin at this site is computed. The energy 
change is given by 

AE,=2Ja, ~ (r j  (1) 
(i , j)  
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where the summation is over nearest neighbors of site i and J is the coupl- 
ing energy. If AEi <~ 0 the spin is "flipped" (tri ~ - try), whereas if AE~ > O, 
the spin is flipped with probability e -~E~/r, where T is the temperature. 
After this procedure has been iterated sufficiently many times, the resulting 
probability distribution for the spin configurations is close to the equi- 
librium state. 

Metropolis dynamics is governed by a random list of sites and, for 
each site in the list, a random number x; with 0 ~< x~ < 1 such that the site 
is flipped if x~<<.e -'Je~/r, we can define the following natural decision 
problem for Metropolis dynamics. 

Metropolis Dynamics (dimension d) 

Given: A positive integer L, an initial configuration of L d spins { ai} 
with t r ~ e { - 1 ,  + 1}, a temperature variable Q = e  -4J/r where Q is 
expressed as a b-bit binary number, a designated site s expressed in unary 
with Isl = L d, a list of M sites, and a list of M random numbers xi with 
0 ~< xi < 1 expressed as a db-bit number. 

Problem: Is as = + 1 after running the Metropolis algorithm? 

Given the random numbers x~, we can assign flip variables, 
g; e {0 ..... d}, to each site i. For example, in three dimensions the flip 
variables are defined by the inequalities 

g j = 0  if O<.xi<~Q 3 

gi = 1 if 0 3 < xi ~< Q2 

g ; = 2  if Q2<xi<~Q 

g ; = 3  if Q < x ~ < l  

If a site k is chosen for a possible flip at step i and AEk/4J ~< 3 -- g;, then 
the flip is carried out; otherwise, the spin is not changed. In other words, 
a chosen spin i will flip at step j if it has g; or more neighbors of the 
opposite sign. It is clear that the Metropolis decision problem can be NC 
reduced to a version in which the random input is expressed as a list of flip 
variables; it is this variant of the problem that we show is P-complete. 

Theorem 3.3. Metropolis dynamics is P-complete for d greater 
than or equal to 3. 

Proof Sketch The Metropolis problem is proved P-complete by a 
reduction from monotone CVP. The circuit is first "embedded" in a three- 
dimensional lattice. The AND and OR gates are represented by sites and 
wires connecting gates by chains of sites and bonds. For a circuit having 
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N edges, it can be shown that such an embedding may be carried out in 
NC. Initially, all spins on the lattice are - 1. Logical values are represented 
by spin values with + 1 ( - 1 )  meaning TRUE (FALSE). Logical values are 
propagated along wires by the following device: spins along the wire are 
sequentially chosen for flipping and assigned the flip variable 1. If the 
predecessor spin along the wire is + 1, the current spin will flip to + 1, but 
if the predecessor spin along the wire is - 1 ,  the flip is rejected. Thus, once 
initiated, logical values propagate along wires. Wires must always be 
separated by one or more lattice spacings except where they meet at gates. 
Sites representing gates have two input wires and two output wires. After 
all sites along the input wires have taken their logical values, the gate is 
ready for evaluation. Gates are assigned the flip variable 2 (1) for an AND 
(OR) gate. Thus, if at least one input is TRUE, an OR gate registers TRUE, 
while both inputs must be TRUE for an AND gate to register TRUE. This NC 
reduction shows that we can simulate an arbitrary monotone circuit using 
Metropolis dynamics in three or more dimensions. Therefore, the 
Metropolis dynamics problem is P-complete. 

Note that the planar monotone circuit value problem is in NC; see ref. 
14 for a list of references regarding this problem. So, our proof does not 
show that the two-dimensional Metropolis problem is P-complete. We 
have been unsuccessful in our attempts to implement a NOT gate within the 
framework of Metropolis dynamics. 

The construction in Theorem 3.3 relies on a special ordering of the 
sites chosen for flipping. However, we can easily extend the proof to updat- 
ing schemes in which sweeps through the lattice are performed in a fixed 
order. For example, consider the case of parallel updating where first the 
odd sublattice is flipped all at once and then the even sublattice. The 
problem statement is slightly different here, since now at each time step flip 
variables are assigned to half the sites in the lattice. It is easy to keep sites 
inactive by assigning them flip variables 3. Sites are assigned flip variables 
I or 2 as in the above construction at the times they are to be evaluated. 

3.4. Cluster  Dynamics  for  the  Ising M o d e l  

Cluster flipping algorithms due to Wolff t28) and Swendsen and 
Wang t29) are very efficient methods for generating equilibrium states of the 
Ising model near criticality. In this section we show that natural decision 
problems associated with the Wolff and Swendsen-Wang algorithms are 
P-complete. 

We illustrate the Wolff algorithm on an L x L square lattice. The 
starting point is a configuration of spins {aj}. Next the bonds of the lattice 
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are independently occupied with probability p as in bond percolation. 
The occupation parameter is related to the temperature T according to 
p = 1 - Q with Q = e-Z~/r and J the coupling energy between neighboring 
spins. A site u on the lattice is chosen at random and a cluster is grown 
from this site. A site v is in the cluster grown from u if there is a path from 
u to v such that all the bonds along the path are occupied and all the spins 
along the path including tro are equal to a, .  The cluster of spins defined in 
this way is "flipped" (tr ~ - cr for each cr in the cluster), which yields a new 
spin configuration. The procedure is iterated M times. If the temperature T 
is chosen to be the critical temperature and if M is sufficiently large, the 
final configuration of spins is close to the equilibrium Ising critical point. 
At the Ising critical temperature, the clusters defined by the algorithm are 
critical droplets (3~ with Hausdorf dimension D n  equal to 15/8. 

The Swendsen-Wang algorithm is very similar to the Wolff algorithm 
except that in each step of the algorithm all connected clusters defined by 
the occupied bonds are identified. All sites of each cluster are assigned the 
same spin value. The spin values for each cluster are determined indepen- 
dently by a fair coin toss. 

For each iteration of the Wolff or Swendsen-Wang algorithm, every 
bond of the lattice is occupied with probability p equal to 1 - Q. To imple- 
ment this we utilize random numbers x U with 0 ~< x o. < 1 for each nearest 
neighbor pair (/j). The bond (tj) is occupied if x o. is greater than Q. At each 
time step a cluster is grown from the starting point according to the 
occupation variables and the current spin configuration as described above. 
This cluster is flipped and the procedure repeated M times. We can define 
the following natural problem based on Wolff dynamics. 

Wolff Dynamics (dimension d) 

Given: A positive integer L, an initial configuration of L a, spins {a;} 
with a~e { - 1 ,  +1},  a temperature variable Q = e  -~ / r ,  where Q is 
expressed as a b-bit binary number, a designated site s expressed in unary 
with Isl = L  ~, a list of M sites, and d M L  a random numbers x U with 
0 ~< x U < 1 expressed as a b-bit number. 

Problem: Is as = + 1 after running the Wolff algorithm? 

Given tl'le random numbers xo., we can assign bond occupation 
variables b o, such that b,j= 0 if xo.<~ Q and bg= 1 otherwise. Bonds are 
counted as occupied if b U = 1. It is clear that the Wolff decision problem 
can be N C  reduced to a version in which the random input is given as the 
b o. instead of the x;j. It is this version that we show is P-complete using a 
reduction from the planar NOR circuit value problem. 



1320 Machta and Greenlaw 

T h e o r e m  3.4. Wolff dynamics is P-complete. 

Proof Idea The reduction is best illustrated by a simple example. We 
sketch it for the case d equals two. Consider the planar circuit shown in 
Fig. 7 with three inputs and three NOR gates. The evaluation of this circuit 
can be reduced to the Wolff problem shown in Fig. 8. The lower case letters 
indicate occupied bonds and time steps that are arranged in alphabetical 
order. All bonds labeled a are occupied only during step 1, all bonds 
labeled b are occupied only during step 2, and so on. Bonds that are not 
explicitly shown are never occupied. All spins on the lattice originally have 
the value + 1 except those that are labeled FALSE. A -I-1 spin represents 
TRUE and vice versa. Numbers label initiation sites for cluster growth. 
Cluster growth is initiated at gates and logical constants. Site 1 initiates the 
cluster growth at time step 1 and represents the TRUE input to the circuit; 
site 2 initiates growth at time step 2 and so on. The first cluster propagates 
as far as site 4 and both sites 1 and 4 (and the intermediate site) are flipped 
to - 1. Site 2 initiates the next cluster, which does not propagate. Site 2 is 
flipped to -t-1. The cluster initiated at 3 does not propagate, so that at the 
beginning of time step 4 site 4 is in the FALSE state; the first gate has been 
properly evaluated. At time step 4 site 4 flips, but nothing else happens; the 
second gate properly evaluates to TRUE. At time step 5 a cluster propagates 
from site 5 to the output gate that is flipped to - 1 .  The output of the cir- 
cuit is FALSE as it should be. 

TRUE FALSE FALSE 

Fig. 7. A simple planar NOR circuit with three inputs and three gates used to illustrate 
Theorem 3.4. 



Computational Complexity of Generating Random Fractals 1321 

A 

d 
q 

d 
q 

d 
q 

d 

TRUE FALSE 

d , d  . d  , d  , d  
v v - -  w 

A A 

e ] ' e  - e  

d I 5 c 

C 

C 

C 

3 
FALSE 

C e 

Fig. 8. The Wolff problem that simulates the NOR circuit. Numbered sites represent gates and 
logical constants. Bonds with the same letter are occupied during the same time step, bonds 
a during step 1, bonds b during step 2, and so on. 

More generally, a NOR gate is represented by spins, and wires connect- 
ing gates are represented by paths of bonds and spins. All of the bonds in 
a wire are occupied at the time step during which the wire transmits its 
logical value. If the logical value is TRUE, a cluster of up spins is propagated 
along the wire and the output end of the wire is flipped to FALSE if this has 
not yet occurred. A gate transmits its value by initiation of a cluster and 
the output of a gate can be read off as soon as all of its predecessors have 
transmitted their values. Note that a fan-out higher than two may easily be 
supported. Sites representing gates and logical constants must not be 
nearest neighbors. It is clear that the reduction of the circuit to Wolff 
dynamics can be carried out locally and is an NC reduction. Since planar 
NOR CVP is P-complete, so is the Wolff dynamics problem. 

Next we turn our attention to a natural decision problem associated 
with the Swendsen-Wang algorithm. The problem statement requires ran- 
dom "bits" c; equal to _+ l, to be used to determine the spins in the clusters. 
Sites are given a conventional ordering. Connected clusters defined by Q 
and the variables x o. are labeled by the lowest ordered site l in the duster 
and all the spins in the cluster are assigned the value ct. 

Swendsen-Wang Dynamics (dimension d) 

Given: A positive integer L, an initial configuration of L d spins {tri} 
with t r l e { - l ,  + l } ,  a temperature variable Q = e  -~/r ,  where Q is 
expressed as a b-bit binary number, a designated site s expressed in unary 
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with Is[ = L a, a number of iterations M, a list of dAIL  d random numbers 
x u with 0 ~ x,j < 1 expressed as a b-bit number, and a list of M L  '~ random 
bits c~. 

Problem: Is tx s = + 1 after running the Swendsen-Wang algorithm? 

Theorem 3.5. Swendsen-Wang dynamics is P-complete. 

P r o o f / d e a  The proof is similar to that for the Wolff problem and 
consists of a reduction from planar NOR CVP. Here again a value of d 
equal to two suffices for the reduction. Consider a two-dimensional lattice 
and suppose that the conventional ordering of sites on the lattice is from 
left to right and then from bot tom to top. The occupation variables b u are 
chosen the same as for the reduction to the Wolff problem. The cluster spin 
variables ci are - 1  for gates and TRtrE inputs at the time they transmit 
their values and + 1 for all other sites and all other times. 

For both Wolff and Swendsen-Wang dynamics, a single iteration of 
the algorithm can be accomplished in polylogarithmic parallel time using 
a polynomial number of processors. This is because the most complex step 
is the identification of a connected component(s), which can be carried out 
by a standard NC algorithm. (33) More specifically, if the number of itera- 
tions M is set to a constant in the statement of either the Wolff problem 
or the Swendsen-Wang problem, the resulting decision problem is in NC. 
For the Metropolis algorithm, an even stronger result holds. If M equals 
a constant, the Metropolis decision problem is in AC ~ These conclusions 
are not in conflict with the P-completeness proofs that rely on setting M 
comparable to the size of the Boolean circuit being simulated. The P-com- 
pleteness results show that a polynomial (in the system size) number of 
iterations of these algorithms cannot be compressed into a polylogarithmic 
number of parallel steps unless NC = P. 

4. D I S C U S S I O N  

4.1. S u m m a r y  of Results 

We have studied the computational complexity of natural decision 
problems associated with several models in statistical physics. Our results 
can be summarized as follows: 

1. Mandelbrot percolation is in AC ~ (Theorem 3.1). 

2. Diffusion limited aggregation is P-complete (Theorem 3.2). 

3. Metropolis dynamics for the Ising model with d~> 3 is P-complete 
(Theorem 3.3). 
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4. Wolff dynamics for the Ising model is P-complete (Theorem 3.4). 

5. Swendsen-Wang dynamics for the Ising model is P-complete 
(Theorem 3.5). 

4.2. Scope of the Results 

It is important to understand the limitations of the P-completeness 
results for DLA and the variants of Ising dynamics. Suppose we accept the 
hypothesis from complexity theory that NC q: P. In this case the particular 
dynamics discussed here for generating DLA clusters or equilibrium Ising 
configurations are inherently sequential and cannot be efficiently simulated 
in parallel. There are other ways to generate (approximate) equilibrium 
states of the Ising model or DLA clusters; our results do not imply that 
these ways are associated with P-complete problems. However, it was pre- 
viously shown 15~ that a second method of producing DLA clusters is also 
P-complete. It seems plausible that there are no poly-logarithmic time 
methods for sampling the DLA distribution. On the other hand, the jury 
remains out on whether it is possible to sample from an approximation to 
the equilibrium critical distribution for spin models in polylogarithmic 
time. It would be of great interest to obtain results on the difficulty of 
sampling physically interesting distributions. 

A second limitation of the P-completeness statements is that they are 
worst case rather than average case results. For example, assuming that 
NC :/: P, we know that there exist instances of the DLA problem that can- 
not be solved in polylogarithmic time, although we do not know whether 
these "hard" instances are typical or very rare. Indeed, the instances used 
in the P-completeness proofs are atypical. If the "hard" instances are suf- 
ficiently rare, we may be able to sample the distribution in poly-logarithmic 
time on average. The theory of average case complexity ~34"35~ addresses 
questions of this kind. Unfortunately, it is not easy to see how to apply this 
theory to the present problems. 

4.3. Parallel complexity and Critical Slowing Down 

Away from a critical point, the equilibration time of real systems 
without macroscopic inhomogeneities is independent of system size. 
Similarly, the Metropolis algorithm can generate good approximations to 
equilibrium configurations of the Ising model away from the critical point 
in constant parallel time since each sweep can be done in constant time and 
the number of sweeps is independent of the system size. The associated 
decision problem is in AC ~ 
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Equilibration of many real systems becomes increasingly slow near 
critical points. Typically the equilibration time at a critical point scales as 
L z, where L is the system size and z is the dynamic exponent. This 
phenomenon known as critical slowing down, also afflicts most Monte 
Carlo methods used to sample spin configurations at critical points. The 
dynamic exponent z is customarily defined for Monte Carlo dynamics if 
relaxation to equilibrium requires flipping L z § a spins. It is often said that 
an algorithm suffers no critical slowing down if z = 0  (with possible 
logarithmic corrections). This is not a satisfactory general definition of 
"absence of critical slowing down." For example, imagine an algorithm for 
which each spin is flipped only once but an enormous computation is 
required to decide whether or not to effect the flip. Alternatively, one might 
propose that "absence of critical slowing down" means that the sequential 
time (computational work) is o(L a+') for any E > 0. This definition is both 
machine dependent and unnecessarily stringent. 

We propose that "absence of critical slowing down" should be iden- 
tified with the class NC. A sampling method suffers no critical slowing 
down if it can be run in polylogarithmic time on a P-RAM with polyno- 
mially many processors. This definition is, for the most part, in agreement 
with the z = 0 definition. If  z > 0 for the Monte Carlo methods studied here, 
the P-completeness results show that there is critical slowing down accord- 
ing to the new definition. On the other hand, if z = 0  for either the 
Metropolis or Swendsen-Wang algorithms, there is no critical slowing 
down since a single sweep through the lattice for either of these algorithms 
can be done efficiently in parallel and z = 0 implies a poly-logarithmic num- 
ber of sweeps. In contrast, the Wolff algorithm suffers critical slowing down 
even for z = 0 according to the new definition. The reason is that the 
average size of Wolff clusters scales as L ~'/~, where y is the susceptibility 
exponent and v the correlation length exponent. Thus, even if z = 0, one 
typically requires L a-y/~ iterations of the algorithm to reach equilibrium. 
The P-completeness result shows that carrying out these iterations can 
almost certainly not be done in poly-logarithmic time using a polynomial 
number of processors. 

4.4.  F ina l  R e m a r k s  

In this and two previous papers (5" 6) we have investigated the parallel 
computational complexity of a variety of models in statistical physics. We 
have claimed that parallel complexity provides statistical physics with a 
robust and sharply defined measure that reflects some of our more intuitive 
notions of complexity. We have classified a wide variety of models into 
three broad classes: those that require constant parallel time to simulate, 
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those that require polylogarithmic time, and those that require polynomial  
time. In each case we allow a polynomial  number  of processors. Even 
among models that generate random fractal patterns, we find repre- 
sentatives in each of these classes. Comparisons between members of dif- 
ferent classes reveal that models in the higher classes generally pose a more 
difficult theoretical challenge. It would be extremely interesting to find 
more precise correlations between computa t ional  complexity and the 
quantit ies conventionally studied in statistical physics. 
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